Abstract
A group in which every element commutes with its endomorphic images is called an “E-group″. If p is a prime number, a p-group G which is an E-group is called a “pE-group″. Every abelian group is obviously an E-group. We prove that every 2-generator E-group is abelian and that all 3-generator E-groups are nilpotent of class at most 2. It is also proved that every infinite 3-generator E-group is abelian. We conjecture that every finite 3-generator E-group should be abelian. Moreover, we show that the minimum order of a non-abelian pE-group is p 8 for any odd prime number p and this order is 27 for p = 2. Some of these results are proved for a class wider than the class of E-groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.