Abstract

In this paper, we characterize the set of static-state feedbacks that stabilize a given continuous linear-time invariant system pair using dissipative Hamiltonian matrices. This characterization results in a parametrization of feedbacks in terms of skew-symmetric and symmetric positive semidefinite matrices, and leads to a semidefinite program that computes a static-state stabilizing feedback. This characterization also allows us to propose an algorithm that computes minimal-norm static feedbacks. The theoretical results extend to the static-output feedback (SOF) problem, and we also propose an algorithm to compute the minimal-norm SOF. We illustrate the effectiveness of our algorithm compared to state-of-the-art methods for the SOF problem on numerous numerical examples from the COMPLeIB library.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.