Abstract
We propose an analogue of SU(1,1) interferometry to measure rotation of a spin by using two-spin squeezed states. Attainability of the Heisenberg limit for the estimation of the rotation angle is demonstrated for maximal squeezing. For a specific direction and strength an advantage in sensitivity for all equatorial rotation axes (and hence non-commuting rotations) over the classical bound is shown in terms of quadratic scaling of the single-parameter quantum Fisher information for the corresponding rotation angles. Our results provide a method for measuring magnetic fields in any direction in the x-y-plane with the same optimized initial state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.