Abstract

Motivated by the absence of signals of new physics in both searches for new particles at LHC and for a Weakly Interacting Massive Particle (WIMP) dark matter candidate, we consider a scenario where supersymmetry is broken at a scale above the reheating temperature. The low energy particle content consists then only in Standard Model states and a gravitino. We investigate the possibility that the latter provides the main component of dark matter through a freeze in mechanism from annihilation of thermalized Standard Model particles. We focus on the case where its production through scattering in the thermal plasma is well approximated by the non-linear supersymmetric effective Lagrangian of the associated goldstino and identify the parameter space allowed by the cosmological constraints, allowing the possibility of large reheating temperature compatible with leptogenesis scenarios, alleviating the so called "gravitino problem".

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call