Abstract

In this paper we study the minimal matrices for the Bruhat order on the class of symmetric (0,1)-matrices with given row sum vector. We will show that, when restricted to the symmetric matrices, new minimal matrices may appear besides the symmetric matrices for the nonrestricted Bruhat order. We modify the algorithm presented by Brualdi and Hwang (2004), which gives a minimal matrix for the Bruhat order on the class of (0,1)-matrices with given row and column sum vectors, in order to obtain a minimal matrix for the Bruhat order on the class of symmetric (0,1)-matrices with given row sum vector. We identify other minimal matrices in some of these classes. Namely, we determine all the minimal matrices when the row sums are constant and equal to 3. We then describe a family of symmetric matrices that are minimal for the Bruhat order on the class of 2k-by-2k(0,1)-matrices with constant row sums equal to k+1 and identify, in terms of the term rank of a matrix, a class of symmetric matrices that are related in the Bruhat order with one of these minimal matrices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.