Abstract
In this treatise, we discuss existence and uniqueness questions for parametric minimal surfaces in Riemannian spaces, which represent minimal graphs. We choose the Riemannian metric suitably such that the variational solution of the Riemannian Dirichlet integral under Dirichlet boundary conditions possesses a one-to-one projection onto a plane. At first we concentrate our considerations on existence results for boundary value problems. Then we study uniqueness questions for boundary value problems and for complete minimal graphs. Here we establish curvature estimates for minimal graphs on discs, which imply Bernstein-type results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Calculus of Variations and Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.