Abstract
We enumerate all minimal energy packings (MEPs) for small single linear and ring polymers composed of spherical monomers with contact attractions and hard-core repulsions and compare them to corresponding results for monomer packings. We define and identify "dividing surfaces" in polymer packings, which reduce the number of arrangements that satisfy hard-sphere and covalent-bond constraints. Compared to monomer MEPs, polymer MEPs favor intermediate structural symmetry. We also examine the packing-preparation dependence for longer single chains using molecular dynamics simulations. For slow temperature quenches, chains form crystallites with close-packed cores. As the quench rate increases, the core size decreases and the exterior becomes more disordered. By examining the contact number, we connect the suppression of crystallization to the onset of isostaticity in disordered packings.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.