Abstract

Landauer's principle imposes a fundamental limit on the energy cost to perfectly initialize a classical bit, which is only reached under the ideal operation with infinitely long time. The question on the cost in the practical operation for a bit has been raised under the constraint by the finiteness of operation time. We discover a raise-up of energy cost by L^{2}(ε)/τ from the Landaeur's limit (k_{B}Tln2) for a finite-time τ initialization of a bit with an error probability ε. The thermodynamic length L(ε) between the states before and after initializing in the parametric space increases monotonously as the error decreases. For example, in the constant dissipation coefficient (γ_{0}) case, the minimal additional cost is 0.997k_{B}T/(γ_{0}τ) for ε=1% and 1.288k_{B}T/(γ_{0}τ) for ε=0.1%. Furthermore, the optimal protocol to reach the bound of minimal energy cost is proposed for the bit initialization realized via a finite-time isothermal process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call