Abstract
We show that if G is a graph embedded on the projective plane in such a way that each noncontractible cycle intersects G at least n times and the embedding is minimal with respect to this property (i.e., the representativity of the embedding is n), then G can be reduced by a series of reduction operations to an n × n × n projective grid. The reduction operations consist of changing a triangle of G to a triad, changing a triad of G to a triangle, and several others. We also show that if every proper minor of the embedding has representativity < n (i.e., the embedding is minimal), then G can be obtained from an n × n × n projective grid by a series of the two reduction operations described above. Hence every minimal embedding has the same number of edges. © 1997 John Wiley & Sons, Inc. J Graph Theory 25: 153–163, 1997
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.