Abstract

For a square-free bivariate polynomial p of degree n we introduce a simple and fast numerical algorithm for the construction of n×n matrices A, B, and C such that det⁡(A+xB+yC)=p(x,y). This is the minimal size needed to represent a bivariate polynomial of degree n. Combined with a square-free factorization one can now compute n×n matrices for any bivariate polynomial of degree n. The existence of such symmetric matrices was established by Dixon in 1902, but, up to now, no simple numerical construction has been found, even if the matrices can be nonsymmetric. Such representations may be used to efficiently numerically solve a system of two bivariate polynomials of small degree via the eigenvalues of a two-parameter eigenvalue problem. The new representation speeds up the computation considerably.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.