Abstract

We classify real families of minimal degree rational curves that cover an embedded rational surface. A corollary is that if the projective closure of a smooth surface is not biregular isomorphic to the projective closure of the unit-sphere, then the set of minimal degree rational curves that cover the surface is either empty or of dimension at most two. Moreover, if these curves are of minimal degree over the real numbers, but not over the complex numbers, then almost all the curves are smooth. Our methods lead to an algorithm that takes as input a real surface parametrization and outputs all real families of rational curves of lowest possible degree that cover the image surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.