Abstract

Elementary modes (EMs) and minimal cut sets (MCSs) provide important techniques for metabolic network modeling. Whereas EMs describe minimal subnetworks that can function in steady state, MCSs are sets of reactions whose removal will disable certain network functions. Effective algorithms were developed for EM computation while calculation of MCSs is typically addressed by indirect methods requiring the computation of EMs as initial step. In this contribution, we provide a method that determines MCSs directly without calculating the EMs. We introduce a duality framework for metabolic networks where the enumeration of MCSs in the original network is reduced to identifying the EMs in a dual network. As a further extension, we propose a generalization of MCSs in metabolic networks by allowing the combination of inhomogeneous constraints on reaction rates. This framework provides a promising tool to open the concept of EMs and MCSs to a wider class of applications. utz-uwe.haus@math.ethz.ch; klamt@mpi-magdeburg.mpg.de Supplementary data are available at Bioinformatics online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call