Abstract
The declines that provide vehicle access in an underground mine are typically designed as paths formed by concatenating line segments and circular arcs. In order to reduce wear on the ore trucks and the road surfaces and to enhance driver safety, such paths may be subject to a further constraint: each pair of consecutive arcs with opposite orientations must be separated by a straight line segment of at least a certain specified length. In order to reduce the construction and operational costs of the mine, it is desirable to minimize the lengths of such paths between any given pair of directed points. Some necessary and sufficient conditions are obtained for paths of this form to be locally or globally minimal with respect to length. In particular, it is shown that there is always a globally minimal path that contains at most four circular arcs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computational Geometry & Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.