Abstract
A virtual link may be defined as an equivalence class of diagrams, or alternatively as a stable equivalence class of links in thickened surfaces. We prove that a minimal crossing virtual link diagram has minimal genus across representatives of the stable equivalence class. This is achieved by constructing a new parity theory for virtual links. As corollaries, we prove that the crossing, bridge, and ascending numbers of a classical link do not decrease when it is regarded as a virtual link. This extends corresponding results in the case of virtual knots due to Manturov and Chernov.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.