Abstract

We consider minimal controllability problems (MCPs) on linear structural descriptor systems. We address two problems of determining the minimum number of input nodes such that a descriptor system is structurally controllable. We show that MCP0 for structural descriptor systems can be solved in polynomial time. This is the same as the existing results on a typical structural linear time invariant (LTI) systems. However, the derivation of the result is considerably different because the derivation technique of the existing result cannot be used for descriptor systems. Instead, we use the Dulmage--Mendelsohn decomposition. Moreover, we prove that the results for MCP1 are different from those for usual LTI systems. In fact, MCP1 for descriptor systems is an NP-hard problem, while MCP1 for LTI systems can be solved in polynomial time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.