Abstract
Various formalisms for representing and reasoning about temporal information with qualitative constraints have been studied in the past three decades. The most known are definitely the Point Algebra (PA) and the Interval Algebra (IA) proposed by Allen. In this paper, for both calculi, we study a particular problem that we call minimal consistency problem (MinCons). Given a temporal qualitative constraint network (TQCN) and a positive integer k, this problem consists in deciding whether or not this TQCN admits a solution using at most k distinct points on the line. On the one hand, we prove that this problem is NP-complete for both PA and IA, in the general case. On the other hand, we show that for TQCNs defined on the convex relations, MinCons is polynomial. For these TQCNs, we give a polynomial method allowing to obtain compact scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.