Abstract

The self-splicing intron ribozymes have been regarded as primitive forms of the splicing machinery for eukaryotic pre-mRNAs. The splicing activity of group I self-splicing introns is dependent on an absolutely conserved and exceptionally densely packed core region composed of two helical domains, P3-P7 and P4-P6, that are connected rigidly via base triples. Here we show that a mutant group I intron ribozyme lacking both the P4-P6 domain and the base triples can perform the phosphoester transfer reactions required for splicing at both the 5' and 3' splice sites, demonstrating that the elements required for splicing are concentrated in the stacked helical P3-P7 domain. This finding establishes that the conserved core of the intron consists of two physically and functionally separable components, and we present a model showing the architecture of a prototype of this class of intron and the course of its molecular evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.