Abstract

Let K be an algebraically closed field of null characteristic and p(z) a Hilbert polynomial. We look for the minimal Castelnuovo–Mumford regularity mp(z) of closed subschemes of projective spaces over K with Hilbert polynomial p(z). Experimental evidences led us to consider the idea that mp(z) could be achieved by schemes having a suitable minimal Hilbert function. We give a constructive proof of this fact. Moreover, we are able to compute the minimal Castelnuovo–Mumford regularity mϱp(z) of schemes with Hilbert polynomial p(z) and given regularity ϱ of the Hilbert function, and also the minimal Castelnuovo–Mumford regularity mu of schemes with Hilbert function u. These results find applications in the study of Hilbert schemes. They are obtained by means of minimal Hilbert functions and of two new constructive methods which are based on the notion of growth-height-lexicographic Borel set and called ideal graft and extended lifting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.