Abstract

We show that minimal boson stars, i.e., boson stars that are made out of scalar fields without self-interaction, are always classically unstable in 5 spacetime dimensions. This is true for the non-rotating as well as rotating case with two equal angular momenta and in both Einstein and Gauss–Bonnet gravity, respectively, and contrasts with the 4-dimensional case, where classically stable minimal boson stars exist. We also discuss the appearance of ergoregions for rotating boson stars with two equal angular momenta. While rotating black holes typically possess an ergoregion, rotating compact objects without horizons such as boson stars have ergoregions only in a limited range of the parameter space. In this paper, we show for which values of the parameters these ergoregions appear and compare this with the case of standard Einstein gravity. We also point out that the interplay between Gauss–Bonnet gravity and rotation puts constraints on the behaviour of spacetime close to the rotation axis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.