Abstract

Crystal structure prediction (CSP), determining the experimentally observable structure of a molecular crystal from the molecular diagram, is an important challenge with technologically relevant applications in materials manufacturing and drug design. For the purpose of screening the randomly generated candidate crystal structures, CSP protocols require energy ranking methods that are fast and can accurately capture the small energy differences between molecular crystals. In addition, a good ranking method should also produce accurate equilibrium geometries, both intramolecular and intermolecular. In this article, we explore the combination of minimal-basis-set Hartree-Fock (HF) with atom-centered potentials (ACPs) as a method for modeling the structure and energetics of molecular crystals. The ACPs are developed for the H, C, N, and O atoms and fitted to a set of reference data at the B86bPBE-XDM level in order to mitigate basis-set incompleteness and missing correlation. In particular, ACPs are developed in combination with two methods: HF-D3/MINIs and HF-3c. The application of ACPs greatly improves the performance of HF-D3/MINIs for lattice energies, crystal energy differences, energy-volume and energy-strain relations, and crystal geometries. In the case of HF-3c, the improvement in the crystal energy differences is much smaller than in HF-D3/MINIs, but lattice energies and particularly crystal geometries are considerably better when ACPs are used. The resulting methods may be useful for CSP but also for quick calculation of molecular crystal lattice energies and geometries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call