Abstract
We study two quite different types of Terracini loci for the order d-Veronese embedding of an n-dimensional projective space: the minimal one and the primitive one (defined in this paper). The main result is that if n=4, d≥19 and x≤2d, no subset with x points is a minimal Terracini set. We give examples that show that the result is sharp. We raise several open questions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.