Abstract

We consider a long diffusive Josephson junction where the weak link is a thin (normal metal (N)–ferromagnet (F)) bilayer (N and F form parallel links between superconductors (Ss)). We show that superconductivity in the weak link can be described by an effective one-dimensional Usadel equation containing a “diluted” exchange field as well as a weak depairing term that is caused by the inherent inhomogeneity of the bilayer. The depairing mechanism distinguishes the S(N/F)S system from an SFS junction and affects the density of states of the S(N/F)S junction. It results in the suppression of the minigap in the spin-resolved density of states. The depairing rate and the minigap are expressed in terms of geometrical parameters, the Thouless energy and the effective exchange field. The effective one-dimensional theory can be applied to various structures with thin inhomogeneous links and shows good agreement with numerical solutions of the original two-dimensional equations. We also discuss ways to reveal the predicted effect experimentally.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call