Abstract

The kinetics of the miniemulsion copolymerization of styrene (St) and γ-methacryloxypropyltrimethoxysilane (MPS) was investigated by studying the effects of the MPS/St weight ratio, the nature and amount of initiator, the suspension pH, and the surfactant concentration on the overall and individual monomer conversions. It was found that the introduction of MPS accelerates the free radical copolymerization reaction due to its higher propagation rate constant and higher water solubility compared to styrene. On the other hand, MPS decreases the copolymerization rate mainly during the second half of the reaction. This is presumed to be due to the formation of alkoxysilane-rich copolymers on the particles surface providing a barrier to radical’s entry. The rate of hydrolysis is pH-dependent, and for a given pH, the influence of the surfactant concentration on the hydrolysis rate suggests that the interface between the latex particles and water is the main locus of hydrolysis. 29Si solid-state NMR analysis showed that the hydrolyzed alkoxysilyl moieties did not condense under neutral conditions even for high MPS/St feed ratios. Premature cross-linking could be also minimized under basic conditions but could not be avoided in acidic media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.