Abstract
If dark matter is an axion-like-particle a significant fraction of the present day relic abundance could be concentrated in compact gravitationally bound miniclusters. We study the minicluster masses compatible with the dark matter relic density constraint. If they form from fluctuations produced by PQ symmetry breaking, minicluster masses up to hundreds of solar masses are possible, although over most of the parameter space they are much lighter. The size of these objects is typically within a few orders of magnitude of an astronomical unit. We also show that miniclusters can form if an axion gets mass from a hidden sector with a first order phase transition that takes a relatively long time to complete. Therefore they can appear in models where PQ symmetry is broken before inflation, compatible with large axion decay constants and string theory UV completions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.