Abstract

Minicell, a small spherical form of bacterium produced by abnormal fission, possesses cytoplasmic constituents similar to those of the parental cell, except for genomic DNA. E. coli strains were engineered to produce minicells and value-added chemicals. Minicell-forming mutants showed enhanced tolerance to toxic chemicals and a higher intracellular NADH/NAD+ ratio than the wild-type. When toxic chemicals such as isobutanol, isobutyraldehyde, and isobutyl acetate were produced in this mutant, the titers increased by 67 %, 175 %, and 214 %, respectively. In addition, morphological changes and membrane dispersion mechanisms in minicell-forming mutants improved lycopene production by 259 %. This increase in production capacity was more pronounced when biomass hydrolysate was used as the substrate. Isobutanol and lycopene production also increased by 92 % and 295 %, respectively, on using the substrate in the mutant. It suggests that minicell-forming mutants are an excellent platform for biochemical production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call