Abstract

The Sivas Basin in the Central Anatolian Plateau (Turkey), which formed in the context of a foreland fold-and-thrust belt (FTB), exhibits a typical wall and basin (WAB) province characterized by symmetric minibasins separated by continuous steep-flanked walls and diapirs. Extensive fieldwork including regional and detailed local mapping of the contacts and margins of minibasins, and interpretation of a set of 2-D regional seismic lines, provide evidence for the development of a shallow evaporite level separating two generations of minibasins within the WAB province. Here beds of symmetric exposed minibasins along diapir flank are younger than minibasins observed over autochthonous evaporites. Laterally away from the WAB province, increase in wavelength of the tectonic structures suggests a deepening of the decollement level. We interpret that a shallower evaporite level developed in the form of an evaporite canopy, triggered by significant lateral shortening. The Upper Eocene-Lower Oligocene autochthonous Tuzhisar evaporite level was remobilized by the northward migrating sedimentary load and the tilting of the southern basin margin during propagation of the foreland fold-and-thrust belt. Asymmetric and symmetric primary minibasins were overrun by an allochthonous sheet forming a canopy. A second generation of salt withdrawal minibasins subsided into the allochthonous salt sheet. The polygonal pattern of the WAB province influences the growing fold-and-thrust belt system during the late stage of the secondary minibasins development. The Sivas FTB basin is the result of the interaction between fold-and-thrust belt propagation, evaporite remobilization, and interaction between evaporite flow and sedimentation in the minibasins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call