Abstract

A wafer-thin chip-scale portable spectrometer suitable for wearable applications based on a reconstructive algorithm was demonstrated. A total of 16 spectral encoders that simultaneously functioned as photodetectors were monolithically integrated on a chip area of 0.16 mm2 by applying local strain engineering in compressively strained InGaN/GaN multiple quantum well heterostructures. The built-in GaN pn junction enabled a direct photocurrent measurement. A non-negative least-squares (NNLS) algorithm with total-variation regularization and a choice of a proper kernel function was shown to deliver a decent spectral reconstruction performance in the wavelength range of 400-645 nm. The accuracies of spectral peak positions and intensity ratios between peaks were found to be 0.97% and 10.4%, respectively. No external optics, such as collimation optics and apertures, were used, enabled by angle-insensitive light-harvesting structures, including an array of cone-shaped backreflectors fabricated on the underside of the sapphire substrate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call