Abstract
One of the biggest obstacles for lab-on-chip (LOC) devices is the miniaturization of large-scale devices and its methodologies. Miniaturization of the current microscopic technologies combined with image processing may bring significant advantages for LOC devices in the dynamic processes of sizing, positioning, flow control and cell manipulation at different time scales. Here, we propose a vision system boarded on a polydimethylsiloxane (PDMS) polymer-based chip, which can be utilized in a complex microfluidic network for continuous monitoring of mammalian egg and donor cells of sizes in the range of 10–100 μm. The developed prototype system has sufficient resolution and is accompanied with a robust detection method for cell-based microfluidic applications. To assess its performance, an image processing algorithm was applied, and the capability of the detection method was evaluated using 11- and 26-μm particles. The results show that the proposed optical system of monitoring and illumination can be effectively incorporated into PDMS structures aiming at LOC devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.