Abstract
A miniaturized antipodal Vivaldi antenna to operate from 1 to 30 GHz is designed for nondestructive testing and evaluation of construction materials, such as concrete, polymers, and dielectric composites. A step-by-step procedure has been employed to design and optimize performance of the proposed antenna. First, a conventional antipodal Vivaldi antenna (CAVA) is designed as a reference. Second, the CAVA is shortened to have a small size of the CAVA. Third, to extend the low end of frequency band, the inner edges of the top and bottom radiators of the shortened CAVA have been bent. To enhance gain at lower frequencies, regular slit edge technique is employed. Finally, a half elliptical-shaped dielectric lens as an extension of the antenna substrate is added to the antenna to feature high gain and front-to-back ratio. A prototype of the antenna is employed as a part of the microwave imaging system to detect voids inside concrete specimen. High-range resolution images of voids are achieved by applying synthetic aperture radar algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.