Abstract

Silicon photonics holds promise for a new generation of ultrasound-detection technology, based on optical resonators, with unparalleled miniaturization levels, sensitivities, and bandwidths, creating new possibilities for minimally invasive medical devices. While existing fabrication technologies are capable of producing dense resonator arrays whose resonance frequency is pressure sensitive, simultaneously monitoring the ultrasound-induced frequency modulation of numerous resonators has remained a challenge. Conventional techniques, which are based on tuning a continuous wave laser to the resonator wavelength, are not scalable due to the wavelength disparity between the resonators, requiring a separate laser for each resonator. In this work, we show that the Q-factor and transmission peak of silicon-based resonators can also be pressure sensitive, exploit this phenomenon to develop a readout scheme based on monitoring the amplitude, rather than frequency, at the output of the resonators using a single-pulse source, and demonstrate its compatibility with optoacoustic tomography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call