Abstract

This paper presents a design and fabrication of millimeter scale walking robot using ionic polymer–metal composite (IPMC) actuator as the robot's leg for walking in terrestrial environment. A small scale of new IPMC actuator based on poly-vinylidene fluoride (PVDF)/polyvinyl pyrrolidone (PVP)/polystyrene sulfuric acid (PSSA) blend membrane was fabricated and employed in this study to sustain and drive the walking robot with sufficient force and displacement. The PVDF/PVP/PSSA based IPMC actuator with a polymer mixture ratio of 15/30/55 shows improved performances than Nafion based IPMC actuator. To enhance a traction force of the walking robot and to increase the life time of IPMC actuators, the IPMC strips are covered with a thin PDMS (polydimethylsiloxane) layer. A miniaturized terrestrial walking robot (size: 18 × 11 × 12 mm, weight: 1.3 g) with a light weight robot's body which can support 2-, 4-, or 6-IPMC-leg models was designed and implemented the walking motion on the ground at the maximum speed of 0.58 mm/s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.