Abstract

In the field of biology, dark field microscopy provides superior insight into cells and subcellular structures. However, most dark field microscopes are equipped with a dark field filter and a light source on a 2D-based specimen, so only a flat sample can be observed in a limited space. We propose a compact cell monitoring system with built-in dark field filter with an optimized incident angle of the light source to provide real-time cell imaging and spatial cell monitoring for long-term free from phototoxicity. 2D projection imaging was implemented using a modular condenser lens to acquire high-contrast images. This enabled the long-term monitoring of cells, and the real-time monitoring of cell division and death. This system was able to image, by 2D projection, cells on the surface thinly coated with multiwalled carbon nanotubes, as well as living cells that migrated along the surface of glass beads and hydrogel droplets with a diameter of about 160 μm. The optimal incident light angle-fitted dark field system combines high-contrast imaging sensitivity and high spatial resolution to even image cells on 3D surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.