Abstract

Microelectromechanical system (MEMS) cantilever resonators suffer from high motional impedance (Rm). This paper investigates the use of mechanically coupled multi-cantilever piezoelectric MEMS resonators in the resolution of this issue. A double-sided actuating design, which utilizes a resonator with a 2.5 μm thick AlN film as the passive layer, is employed to reduce Rm. The results of experimental and finite element analysis (FEA) show agreement regarding single- to sextuple-cantilever resonators. Compared with a standalone cantilever resonator, the multi-cantilever resonator significantly reduces Rm; meanwhile, the high quality factor (Q) and effective electromechanical coupling coefficient (Kteff2) are maintained. The 30 μm wide quadruple-cantilever resonator achieves a resonance frequency (fs) of 55.8 kHz, a Q value of 10,300, and a series impedance (Rs) as low as 28.6 kΩ at a pressure of 0.02 Pa; meanwhile, the smaller size of this resonator compared to the existing multi-cantilever resonators is preserved. This represents a significant advancement in MEMS resonators for miniaturized ultra-low-power oscillator applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.