Abstract
A highly miniaturized and commercially available millimeter wave (mmw) radar sensor working in the frequency range between 121 and 127 GHz is presented in this paper. It can be used for distance measurements with an accuracy in the single-digit micrometer range. The sensor is based on the frequency modulated continuous wave (CW) radar principle; however, CW measurements are also possible due to its versatile design. An overview of the existing mmw radar sensors is given and the integrated radar sensor is shown in detail. The radio frequency part of the radar, which is implemented in SiGe technology, is described followed by the packaging concept. The radar circuitry on chip as well as the external antennas is completely integrated into an 8 mm $\times \,\, 8$ mm quad flat no leads package that is mounted on a low-cost baseband board. The packaging concept and the complete baseband hardware are explained in detail. A two-step approach is used for the radar signal evaluation: a coarse determination of the target position by the evaluation of the beat frequency combined with an additional determination of the phase of the signal. This leads to an accuracy within a single-digit micrometer range. The measurement results prove that an accuracy of better than $\pm 6~\mu \text{m}$ can be achieved with the sensor over a measurement distance of 35 mm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Microwave Theory and Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.