Abstract

We describe the principle and realization of a miniaturized magnetic guide for neutral atoms. The magnetic guide in our experiment is formed by a micrometer-sized current-carrying wire which is attached to a second, thick wire. The conductors are electrically insulated from each other. The combined magnetic field of both conductors provides an approximately linear trapping potential which establishes a magnetic guide along the surface of the thin wire. The miniaturized waveguide is filled with rubidium atoms from a magneto-optical trap (MOT) by first loading the atoms into a spherical magnetic quadrupole trap which is subsequently transformed into the linear potential of the waveguide. As thermal source for Rb atoms we use an alkali metal dispenser which is located close to the center of the MOT. This novel method is compatible with ultrahigh vacuum conditions and we achieved lifetimes of the magnetically trapped atoms up to 100 s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.