Abstract

In this paper, a miniaturized kapok fiber-supported liquid extraction (mini-KF-SLE) method was proposed for selective extraction of pesticide residues in vegetable oils. The natural kapok fiber was used as an inert oil support material based on its hydrophobic and lipophilic properties, and the extraction device was conveniently constructed by loading 15 mg of kapok fiber at the lower middle part of a 1-mL pipette tip. The vegetable oil sample (150 mg) without any pretreatment was directly loaded, followed by the addition of 150 μL of acetonitrile (ACN) as the extractant. After static extraction for 30 min, the extractant was pipetted out with a pipettor. As the proof of concept, it was applied for extracting eight organochlorine pesticides (OCPs) from vegetable oils and the eluate was analyzed by gas chromatography-electron capture detector (GC-ECD). Under optimized conditions, the extraction recoveries of OCPs were calculated to be in ranges of 35.8–79.5%. The satisfied quantitation ability was verified by the established method with coefficients of determination (R2) being greater than 0.99. The limits of detection (LODs) were in ranges of 2.0–50.0 ng/g. The relative recoveries were in ranges of 78.3–117.0% with the inter-/intra-day relative standard deviation (RSD) both being less than 13.3%. The potential of mini-KF-SLE to extract other kinds of pesticides was further verified by the successful extracting three triazole pesticides in vegetable oils with good extraction recoveries (>41.4%). The proposed mini-KF-SLE in combination with instrument detection techniques has the great potential in the low-cost and high-throughput determination of various pesticide residues in vegetable oils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.