Abstract

A growing demand for miniaturized biomedical sensors, microscale self-powered electronic systems, and many other portable, wearable, and integratable electronic devices is continually stimulating the rapid development of miniaturized energy storage devices (MESDs). Miniaturized batteries (MBs) and supercapacitors (MSCs) were considered to be suitable energy storage devices to power microelectronics uninterruptedly with reasonable energy and power densities. However, in addition to similar challenges encountered with electrode materials in conventional energy storage devices, their performances are also greatly affected by microfabrication technologies, as well as the challenges of how to realize stable and high-performance MESDs in such a limited footprint area. Benefiting from the unique architectural engineering of two-dimensional materials and the emergence of precise and controllable microfabrication techniques, the output electrochemical performances of MSCs and MBs are improving rapidly. This minireview summarizes recent advances in MSCs and MBs built from two-dimensional materials, including electrode/device configuration designs, material synthesis, microfabrication processes, smart function incorporations, and system integrations. An introduction to configurations of the MESDs, from linear fibrous shapes, planar sandwich thin-film or interdigital structures, to three-dimensional configurations, is presented. The fundamental influences of the electrode material and configuration designs on the exhibited MB/MSC electrochemical performances are also highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call