Abstract

This study presents a compact ultra-wideband (UWB) antenna fed by a coplanar waveguide (CPW) with huge bandwidth for the demands of modern wireless communities. To overcome some technical limitations of the employed substrate and UWB antenna design, a slotted patch resonator was used to create and simulate this antenna based on Locked-Key topology. It has been printed on a 1.5 mm-thick FR4 substrate with a dielectric constant of 4.4. A feeder with characteristic impedances of 50 Ω has been employed. A CST electromagnetic simulator has been employed to simulate and analyze the antenna design. It is operated within the UWB spectrum with a bandwidth of 10.354 GHz, spanning 3.581 to 14 GHz. The overall surface area is 27 × 25 mm2. The gain and maximum efficiency within UWB are better than 3 dBi and 82%, respectively. The antenna is fabricated, and the simulated results are correlated with the measured ones. Finally, the equivalent circuit models for the antenna and rectifier circuit are simulated and measured.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call