Abstract

Miniaturized tin oxide semiconductor sensors are fabricated directly by site-specific dip-pen nanopatterning using precursor inks derived from the sol-gel method. The good flow characteristics and strong affinity of the sols to measurement electrodes enable intimate contact. The measurable, reproducible, and proportionate changes in the resistance of the sensors when exposed to trace quantities of oxidative and reducing gases constitute the basis for such sensors. These sensors show rapid response and ultrafast recovery for the detection of nitrogen dioxide and acetic acid. Furthermore, an array of eight miniaturized sensors is created by doping the pristine tin-based sol ink with different metal ions; the different responses of each sensor to certain gases constitute a reference response spectrum that can be used to recognize the gas. Such recognition ability, instant response and rapid recovery, compact size, and integration with the current microelectronics platform make the miniaturized sensor array a significant development for the on-site and real-time detection of life-threatening gases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.