Abstract

This paper investigates the instrumentation necessary to analyze frequency-dependent complex parameters of solid magnetic materials based on T/R-based waveguide measurement technique proposed by W. B. Weir. Based on the magnitude and phase values of transmission and reflection coefficients measured using vector network analyzer, complex permittivity and permeability are calculated using the expressions defined. Equations necessary for calculating the complex parameters as a function of frequency with required step size are derived from the experimental results. To validate mathematical expressions developed for composite magnetic materials, the design of a compact 2-18 GHz cavity-backed spiral antenna using off-the-shelf magnetic materials is presented. The electrical performance of the cavity along with stack of high contrast magnetic materials of varying dimensions is modeled and simulated in ANSYS HFSS software.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.