Abstract

We demonstrate microfluidic automation and parallelization of Limulus amebocyte lysate (LAL)-based bacterial endotoxin testing using centrifugal microfluidics. LAL is the standard reagent to test for endotoxin contaminations in injectable pharmaceuticals. The main features of the introduced system are more than 90% reduction of LAL consumption, from 100 μL/reaction to 9.6 μL/reaction, automated liquid handling to reduce opportunities for contamination and manual handling errors, and microfluidic parallelization by integrating 104 reactions into a single centrifugal microplate. In a single Eclipse microplate, 21 samples and their positive product controls are tested in duplicate. In addition, a standard curve with up to five points is generated, resulting in a total of 104 reactions. Test samples with a defined concentration of 0.5 endotoxin units per milliliter were tested, resulting in a coefficient of variation below 0.75%. A key feature for achieving a small coefficient of variation is ensuring the same path length along the microfluidic channels to the final reaction chambers for each sample and the reagent, so that any unspecific adsorption to the polymer surfaces does not affect the accuracy and precision. Analysis of a sample containing naturally occurring endotoxin with the developed microfluidic microplate yielded comparable results to the conventional testing method. A test with eight commercially available pharmaceuticals was found to pass all requirements for bacterial endotoxin testing as specified in the United States Pharmacopeia. The automated endotoxin testing system reveals specific advantages of centrifugal microfluidics for analytical biochemistry applications. Small liquid volumes are handled (metered, mixed, and aliquoted) in a very precise, highly integrated, and highly parallel manner within mass-fabricated microplates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.