Abstract

Activation of liver X receptors (LXRs) induces reverse cholesterol transport and increases high-density lipoprotein cholesterol in vivo. Here, we describe novel, functional, homogeneous cell-based fluorescence resonance energy transfer assays for identifying agonists of LXRs using beta-lactamase as the reporter gene. Stable Chinese hamster ovary cell lines expressing LXRalpha-GAL4 or LXRbeta-GAL4 fusion proteins that regulate beta-lactamase transcription from upstream 7 x UAS GAL4 DNA binding sequences were generated and characterized. Synthetic and natural ligands of LXR dose-dependently activated the expression of beta-lactamase in a subtype-specific manner. These assays were used to demonstrate that a 1-pyridyl hydantoin small molecule LXR synthetic ligand specifically activates LXRalpha receptors. The beta-lactamase assays were optimized for cell density, dimethyl sulfoxide sensitivity, and time of agonist stimulation. Clonal LXRbeta-GAL4-beta-lactamase cells were miniaturized into an ultra high throughput (3456-well nanoplates) screening format.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call