Abstract

Organs that develop early in life, and are replaced by a larger version as the animal grows, often represent a miniature version of the adult organ. Teeth constituting the first functional dentition in small-sized teleost fish, such as medaka (Oryzias latipes), are examples of such miniature organs. With a dentin cone as small as the size of one human cell, or even smaller, these teeth raise the question how many dentin-producing cells (odontoblasts) are required to build such a tooth, and whether this number can be as little as one. Based on detailed observations with transmission electron microscopy (TEM) and TEM-based 3D-reconstructions, we show that only one mesenchymal cell qualifies as a true odontoblast. A second mesenchymal cell potentially participates in dentin formation, but only at a late stage of tooth development. Moreover, the fate of these cells appears to be specified very early during tooth development. Our observations indicate that in this system, one single odontoblast fulfills roles normally exerted by a large and communicating cell population. First-generation teeth in medaka thus provide an exciting model to study integration of multiple functions into a single cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.