Abstract

An extension into the fluorescence mode of ion-exchange optodes is described, allowing miniaturization and its concomitant benefits. A micrometer-size, fluorescent fiber-optic sodium sensor is described, based on a highly sodium-selective, crown ether-capped calix[4]arene ionophore, capable of ratiometric operation. Three sensor configurations are given, employing different lipophilic, fluorescent pH chromoionophores (Nile Blue derivatives), demonstrating the ability to improve the detection limit and tune the dynamic range to the desired region of interest. Two of the sensors are of special interest in that their working ranges lie within those desired for measuring intracellular cytosolic or blood levels of sodium at the respective physiological pH. These optodes have excellent sodium selectivity, with other physiologically relevant cations (e.g., potassium, calcium, and magnesium) being highly discriminated. Three simple mathematical relationships are given for the three experimentally used fluorescent signal mechanisms (intensity, intensity ratios, and inner-filter or energy transfer effects), permitting visualization on a single graph and enabling direct comparison of the different sensors' optical responses on a common platform. Finally, these optodes measure the sample's sodium activity, rather than the concentration, provided that the sample's pH is measured simultaneously by another sensor, such as a glass electrode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.