Abstract

The development and testing of a rotating single-disk viscous pump are described. This pump consists of a 10.16mm diameter spinning disk, and a pump chamber, which are separated by a small gap that forms the fluid passage. The walls of the pump chamber form a C-shaped channel with an inner radius of 1.19mm, an outer radius of 2.38mm, and a depth of 40, 73, 117, or 246μm. Fluid inlet and outlet ports are located at the ends of the C-shaped channel. Experimental flow rate and pressure rise data are obtained for rotational speeds from 100to5000rpm, fluid chamber heights from 40to246μm, flow rates from 0to4.75ml∕min, pressure rises from 0to31.1kPa, and fluid viscosities from 1to62mPas. An analytical expression for the net flow rate and pressure rise, as dependent on the fluid chamber geometry, disk rotational speed, and fluid viscosity, is derived and found to agree with the experimental data. The flow rate and pressure rise of the pump vary nearly linearly with rotational speed. The volumetric flow rate does not change significantly with changes in fluid viscosity for the same rotational speed and pumping circuit. Advantages of the disk pumps include simplicity, ease of manufacture, ability to produce continuous flow with a flow rate that does not vary significantly in time, and ability to pump biological samples without significant alteration or destruction of cells, protein suspension, or other delicate matter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.