Abstract

This article describes the design, manufacture, and performance of a prototype miniature resonant ambulatory robot that uses piezoelectric actuators to achieve locomotion. Each leg is comprised of two piezoelectric bimorph benders, joined at the tip by a flexure and end effector. Combinations of amplitude and phase can be used to produce a wide range of motions including swinging and lifting. A lumped mass model previously developed is described as a design tool to tune the resonance modes of the end effector. The completed robot was driven with frequencies up to 500 Hz resulting in a maximum forward velocity of approximately 520 mm/s at 350 Hz. A frequency analysis was also performed to determine the effects of ground contact on the performance of the robot. This analysis showed a significant reduction in the resonance gain and frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.