Abstract

Optical fiber curvature sensors have been considered as a promising option for human motion detection due to its good toughness, bending flexibility and anti-electromagnetic interference. However, for wearable devices, the miniature configuration is preferred, and a high integration of the light emitter, receiver and guided fiber is essential to configure the miniaturized sensing system. Here, we present a miniaturized curvature sensing system by integrating a GaN-based optoelectronic chip with the plastical optical fiber (POF). The light emitter and detector are fabricated on a GaN-on-sapphire wafer to form a tiny chip sized at 2.5 times 1.5 mm2. The on-chip photodetector (PD) effectively senses the reflected light intensity, extracting information on the fiber bending deformation. A compact curvature sensing system is demonstrated for finger motion detection with movement angles of 30–90° and frequencies of 0.4, 1, and 1.6 Hz. The results show that the monolithically integrated LED and PD chip can be combined with the POF with reliable operation. The demonstration of the monolithically integrated optoelectronic device suggests a promising potential technology for future wearable fiber optical sensor system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.