Abstract
Over the last few decades, grazing incidence X-ray optics have been a pivotal tool for advances in X-ray astronomy. They have been successfully employed in many great observatories such as ROSAT, Chandra X-ray Observatory and XMM-Newton. In planetary science, X-ray observations of Solar system objects are a great tool to understand the nature of the target bodies and the evolutionary history of the Solar system as a whole. To date, X-ray observations in near-target planetary missions have been limited to collimator-based instruments due to tight mass and volume constraints, arising from the multi-instrument nature of planetary missions. In addition, unlike observations of astrophysical sources at virtually infinite distances, near-target observations of planetary bodies introduce a unique set of challenges. While true focusing X-ray optics can overcome these challenges, a practical implementation of focusing X-ray optics for planetary missions depends on the feasibility of compact lightweight X-ray optics. We review scientific motivations for X-ray observations of planetary bodies and illustrate the unique challenges encountered in planetary missions through a few examples. We introduce a new metal-ceramic hybrid technology for X-ray mirrors that can enable compact lightweight Wolter-I X-ray optics suitable for resource limited planetary missions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.