Abstract

We explore the feasibility of single atom detection on an atom chip by using a tiny fluorescence detector mounted on the chip. Resonant fluorescence from a trapped ultracold atom will be collected with a miniature aspheric lens and taken out of a vacuum chamber through a fiber. During detection, the atom can be held at the focus of the detector with a dipole trapping beam introduced through the same fiber. We have experimentally determined the optical performance of such a detector, taking into account effects such as stray light from the dipole trapping beam and chromatic aberration. The collection efficiency for isotropically emitted radiation is experimentally obtained to be 2.5%. From this, it is estimated that the fluorescence emitted from a single Rb atom will produce a photon count rate of 4.7x10(4) Hz, which is much larger than the shot noise limited background fluctuations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.