Abstract

In this paper we present how a miniature fiber optic pressure sensor based on micro-optical mechanical systems (MOMS) could solve most of the problems associated with fluidic pressure transduction presently used for triggering purposes in IABP therapy. The small size of the MOMS (∅ 550 µm) allows a positioning of the sensor directly at the tip of the intra-aortic catheter, exactly where the pressure should be monitored. With outstanding performances in terms of resolution and frequency fidelity, this absolute pressure sensor can precisely detect small pressure variations such as the dicrotic notch in the intra-aortic pressure waveform, which is used as a trigger point in IABP therapy. Such technology could probably help in the development of a less invasive therapy with reduced catheter size associated with reduction of vascular complications such as ischemia. The presented optical fiber sensor has intrinsic immunity to electromagnetic fields and noise perturbations. Furthermore, the patented white-light cross-correlation technology of the signal conditioner makes it immune to optical fiber binding and highly tolerant to optical losses. Such solution is extremely well adapted for in situ pressure monitoring in many medical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.